人類的生存不僅借助于太陽、月亮、星星等自然光源,還要借助于火焰、電燈等人造光源。古代中國燧人氏發(fā)明的鉆木取火,以及后來出現(xiàn)的油燈、蠟燭等都是火焰光源。美國人愛迪生(T.A.Edison)發(fā)明的白熾燈,以及后來出現(xiàn)的熒光燈(日光燈)、半導體燈,高壓汞燈等都是電光源。人們對于光以及這些人造光源的明亮程度的認識,經歷了一段漫長的過程。
光是什么?光通常是指能引起人眼的感覺(視覺)的電磁輻射或電磁波,其波長范圍從紅光的780nm到紫光的380nm,包括紅、橙、黃、綠、青、藍、紫各種顏色(光譜)的可見光。廣義地說,從780nm以上到1mm左右的電磁波,包括近紅外、遠紅外與極紅外,被稱為紅外光或紅外線;從380nm以下到1nm,包括近紫外、遠紫外與極紫外(真空紫外),被稱為紫外光或紫外線。這兩種波段的光雖然不能引起視覺,但具備偏振、干涉、衍射,在界面上反射與折射等光的特征,可以用物理光學儀器測出發(fā)射這種光的物體。因此,光學中光的概念也包括了紅外和紫外這些可見區(qū)以外的光輻射,即包括了波長位于向無線電波過渡區(qū)(約1mm)與向x射線過渡區(qū)(1nm)之間的電磁輻射。
光在本質上具有波粒二重性或二像性,即有時表現(xiàn)為荷蘭人惠更斯(C.Huygens)17世紀創(chuàng)立的波動性,有時表現(xiàn)為英國人牛頓(I.Newton)17世紀提倡、愛因斯坦(T.A.Einstein)1905年確立的粒子(光子)性。真空中的光子在不同參考系統(tǒng)中均以光速c運動;如果光的頻率為v,則光子的能量為hv(h為普朗克常數),動量為hv/c,質量為hv/c2(但靜止質量為零)。這種關于光的波粒二象性的認識,后來成為量子理論的基礎。
光源的輻射強度,是光源在給定方向的單位立體角上發(fā)出的輻射功率(輻射通量),顯然它是一個客觀的量,只涉及到SI基本單位的m、kg、s和輔助單位球面度(sr)。所以,輻射度學(Radiometry)單純從物理學觀點來研究輻射現(xiàn)象。但是,光源的發(fā)光強度卻是一個帶主觀因素的量,即在可見光范圍內,一定功率的光輻射作用于人眼后,會引起有明亮感覺的生理效應。這種效應既與輻射強度有關,也與人的生理狀況和心理因素有關。因為視覺對不同波長的光而言,其敏感程度不一,或者說人眼對光的響應是波長的函數,而每個人的視覺函數又有個體差異。光度學(Photometry)即根據視覺特性和約定規(guī)范,來研究和評價輻射的光視效應。
因此,光度學以人眼與電磁輻射的交互作用為基礎,它所測量的不是純粹的物理量,而是一種生理—心理—物理量。例如:光通量(單位為流明,Im)是用標準眼評價的光輻射量,發(fā)光強度(單位為坎德拉,cd)是光源在單位立體角內發(fā)出的光通量,光亮度(單位為坎德拉每平方米,cd/m2)是單位投影面積上發(fā)出的光強度,光照度(單位為勒克斯,lx)是單位面積所接受到的光通量,曝光量(單位為勒克斯秒,lx·s)是照度與時間的乘積。
由于歷史上和實用上原因,光度計量中以坎德拉為SI基本單位,而流明、勒克斯等均為導出單位。早在1860年,英國為適應照明技術的需要,在煤氣條例上規(guī)定以一種特制蠟燭的火焰,在水平方向的發(fā)光強度為1燭光(candle)。為避免火焰的不規(guī)范,1881年在巴黎的首屆國際電氣協(xié)會(國際電工委員會即IEC的前身)上,對燭光做了嚴格規(guī)定,并批準它為光度的國際性單位。鑒于蠟燭火焰發(fā)光的穩(wěn)定性和復現(xiàn)性差,后來就用有機燃料燈替代了蠟燭。隨著白熾燈的發(fā)明,1909年美、英、法三國首先改用一組碳絲白熾燈來保存作為發(fā)光強度單位的“國際燭光”,符號為ic,從此結束了火焰光度時期。
白熾燈的穩(wěn)定性較好,但復現(xiàn)性較差,于是有人建議用凝固過程中鉑表面的發(fā)光強度作為標準。1937年國際計量委員會(CIPM)下設的光度咨詢委員會首次會議決定,從1940年起使用“新燭光”:在鉑凝固溫度下全輻射體(黑體)的亮度為60新燭光/厘米2.1新燭光等于1/1.005國際燭光。由于第二次世界大戰(zhàn)的影響,這個重要決定實際上推遲到1948年第9屆國際計量大會(CGPM)才開始實施,并定名為坎德拉(拉丁文candela)以取代新燭光,從此結束了白熾燈光度時期。為嚴格起見,1967年第13屆CGPM對坎德拉又稍做修正:在101325N/m2壓力下,處于鉑凝固溫度(2045K)的黑體,其1/600000m2表面在垂直方向上的發(fā)光強度為1坎德拉(cd)。
中國計量科學研究院按此定義在1974年建立了國家黑體輻射光度基準,并相應建立了發(fā)光強度副基準和工作基準。國際上先后有9個國家建立了基準并進行過5次國際比對,結果表明各國的一致性并不理想,研制的費用和技術難度也較高,加上鉑凝固點的值隨著科技進步而多次變動,致使光和黑體輻射之間的關系變得不固定。另一方面,輻射測量技術卻進展迅速,使得坎德拉的復現(xiàn)可以采用電替代輻射計(ESR),即可以建立在輻射度的基礎上。于是,在1979年第16屆CGPM上重新定義了坎德拉:發(fā)出頻率為540×1012Hz,給定方向上輻射強度為1/683 W.sr-1的光源,在此方向上的發(fā)光強度為1坎德拉(cd)。從此結束了鉑點黑體光度時期。
這是一個開放性的定義,它允許以多種方式復現(xiàn)坎德拉。我國復現(xiàn)的方法是用一套性能穩(wěn)定的電校準絕對輻射計,配上明視覺光譜光效率函數V(λ)修正濾光器,構成一組光譜響應度與V(λ)一致的基準接受器。用這組基準接受器,測定一組光強副基準燈的發(fā)光強度,然后由副基準燈將發(fā)光強度傳遞到工作基準燈組。1985年,我國參加了國際計量局(BIPM)組織的光度國際比對,結果表明新復現(xiàn)的發(fā)光強度單位量值比國際平均值大0.2%,而光通量單位量值則大0.4%,因而基本上是一致的。通過比對,BIPM保持的新的國際平均坎德拉比1961年的國際平均坎德拉小1%,而流明則比1952年的大0.7%。
1987年1月,BIPM調整了所保持的坎德拉和流明的量值。我國在1993年1月,對光輻射計量單位量值也做了相應調整,以便與國際上保持一致,并有利于消除國際貿易中的技術壁壘。
內容推薦
更多>2021-08-09
2021-06-28
2020-07-13
2019-12-25